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Relativity and the Law of 
The most important claim of Einstein is that of the 

discovery of a new law of gravitation; the claim that there is 
something radically wrong with Newton's law of inverse 
squares. This claim is based primarily upon a certain formula 
for planetary motion deduced by Einstein in 1915, and by the 
fact that this formula appears to explain the observed rotation 
of Mercury's orbit. But the way in which Einstein derived 
this formula for the supposed rotation of planetary orbits is 
not given in any standard work on relativity : even in Einstein's 
basic paper ))Die Grundlage der allgemeinen Relativitats- 
theoriec(l) one does not find a mathematical derivation of 
this fundamental formula. His original and only known deri- 
vation of this most important formula of relativity is, however, 
to be found in an obscure paper published in Berlin in 1915 
under the title of oErkIarung der Perihelbewegung des 
Merkura2). The present note is based upon the formulas and 
methods of this authentic and basic document of relativity, 

In developing his formula for planetary motion Einstein 
starts with a very general mathematical expression, which, 
subject to special values of the factors involved, may represent 
the motions of a body under any and all conditions. For one 
specific set of values this general formula will represent the 
motion of a body at an infinite distance from all other bodies: 
for another specific set the formula represents the motion of a 
body when acted upon by a single gravitational mass, such as 
the sun. The successive introduction of these various factors, 
or specific values of factors, into the general expression is 

by Einstei7L sa~~roximat ionsa .  Thus, when the 
vanish and the point, Or is 

all outside influence, or attraction, Einstein shows that the 
material point, 0' body will move uniformly and i n 8  straight 
line. This is called the #zeroth approximationc. When he 
introduces a single factor into his general formula, he calls 
the result the ))first approximationcc; when he introduces 
additional factors, or conditions he calls the new result his 
ssecond approximation((. 

For his ,first approximation(( Einstein introduces into 
his general formula a factor representing the Newtonian 
gravitational potential: a factor depending solely upon 
Newton,s law of inverse squares, This fundamental tensor, 
thus introduced, is defined mathematically as being (p. 833): 

= I - c(/r 

where is a constant determined by the mass of the 
And in tensor mathenlatics thys corresponds to the negative 
value of the ordinary classical form, mlr , in which the New- 
tonian potential is usually written. The derivative of this 
tensor gives the force due to the gravitational field; and the 
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derivatives of the two factors, the Newtonian and the Ein- 
steinian, are identically the same. Thus, the Einstein tensor 
assumes that the force at any point in the gravitational field 
is inversely proportional to the square of its distance from the 
central body. Einstein, himself, states this fact in unmistakable 
words, when he says that this fundamental tensor oplays the 
part of the gravitational potential((. 

With this aAnsatzcc, or assumption as to the value of the 
fundamental tensor, 2instein writes the resultant equation 
for the component ac&leration in the direction of the axis 
of x as (p. gS5): 

d2x a x  -- 
d S 2 - - 2 2  ' (I) 

And there are two similar equations for the components in the 
directions of X2 and Xs, or of Y and as usually written. If 
the axis of X be taken as coincident with the radius-vector 

the planet, then this be written: 

-- d2r  _ _ -  a 1  - 
ds2 P r2 (Ia) 

and it is apparent that the law of force is the ))inverse square(( 
law ~ ~ ~ t ~ ~ .  ~h~~ the ~ i ~ ~ t ~ i ~  equation is identical with 
the ordinary Newtonian formula: the so-called #first approxi- 
mation(( is simply classical mechanics; constant time, 
measuring-rods of constant lengths, and Newton's law of 
inverse squares, 

To obtain his ,second approximationcc Einstein trans- 
forms the formulas of the *first approximations by introducing 
additional tensors representing the relativity tenets of varying 
Units of time and of space. This transformation is accomplished 
in successive steps by use of the formulas of calculus 
for a change in the independent variable. In all this work, 
however, the Newtonian value of the fundamental tensor is 
left unchanged. The resultant typical equation, which repre- 
sents the component acceleration of his ))second approxi- 
mation((, is (p. 837): 

d2x ccx 3B2 
-. ds!2--;3(1+7) - ( 2 )  

where B is the constant of areas. And this equation differs in 
form from that Of the 'pproximationa by the 
presence of the factor (I +3B2/r2) in the second member. 
It is the small term, 3B2/r2, of this factor which, in the inte- 
grated form of the equation, becomes the so-called #perihelia1 
term" of the relativists, and which gives rise to the celebrated43" 
Per century in the supposed relativity motion of Mercury. 

In these two equations (I) and (2) the letter s represents 
the ))time variable(( (p. 837), and ds thus represents an  infinitely 
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small interval of time. Although designated in the formulas 
by the same letter, or symbol, these time variables are not the 
same. This fact of non-identity is shown not only by the 
mathematical processes used by Einstein, but it is stated by 
him in clear and unequivocal words. In  the section, in which 
are introduced the necessary factors to change the efirstct 
into the ))second{( approximation, is to be found the direct 
statement (p. 837): 

))Wahlt man endlich s ji(1 - 2 A) als Zeitvariable, und 
nennt man letztere wieder s, .((. 

In  this transformation Einstein introduces other stime 
factors(( in addition to the one here specifically admitted. The 
entire transformation factor, as used by Einstein, is: 

I + 3 B2/r2 . 
And this factor represents the relation between the respective 
(ds)2 of the two formulas: represents the ratio of the squares of 
the time intervals, or of the atime variables((. 

Einstein, however, failed to complete the transformation. 
I n  his equation (2) one factor is still expressed in terms of the 
original time variable. This is a, the factor, or constant 
sdetermined by the mass of the sun((. In the formulas and 
methods of celestial dynamics this factor or symbol (whether 
designated by m ,  K2, K M ,  or a) is not an absolute constant. 
In  the ordinary formulas of physics and dynamics there are 
three fundamental, arbitrary, and independent units of mea- 
surement: those of length, of time, and of mass. I n  celestial 
dynamics, however, there are only two such independent 
units : those of length, and of time, In  celestial dynamics there 
is no way of directly measuring mass: there is no way of deter- 
mining how much matter there is in the earth, or in the sun. 
This can only be determined indirectly through the motions 
caused by these bodies. Themass of the sun is measured by the 
accelerationit willgiveto aparticle ofmatter at  a definitedistance 
and in a definite interval of time. Mass in celestial mechanics, 
therefore, is a derived unit, and depends upon and is expressed 
in terms of the adopted units for time and space. This is shown 
by the very equations under discussion. I n  order that the 
various terms shall be homogeneous as to units, the constant 
a must be of the dimensions L3/TZ. Hence, while, of course, 
the mass of the sun itself is constant, the expression for, or the 
measure of such mass will change with the units employed 
for space and time. The ordinary astronomical units are the 
mean solar day and the mean distance ( I~OOOOOOO kilometers) 
of the earth from the sun. In  these astronomical units, the mass 
of the sun is expressed by the fraction 1 / ~ 3 7 ~ ,  or more accura- 
tely by the figure: 

0.000295969. 

But, if either, or both of these units of length and of time be 
changed, then the numerical figure, or constant representing 
the mass of the sun will also be changed. 

This variation of the )>constant determined by the mass 
of the sun(( with the time unit employed is well shown by the 
fundamental formula of planetary motion: 

,u = ()rm)/a8!z 
where m ,  or a in Einstein's notation, is the mass of the sun, 
,u the mean or average motion of the planet in unit time, and 
athe semi-axis major of the orbit. Thus the mean motion Q 

and the measure of the mass (Ji'm) vary, the one with the other: 
if one be constant the other is constant; if one changes, the 
other must change. In one solar day, as may be easily verified, 
the earth moves over 35481193 and the constant for the mass 
of the sun (m) has the value 113379, as heretofore given. 
But in the shorter sidereal day the earth travels only 35381505, 
and the above unquestioned formula of celestial mechanics 
shows that, for sidereal time, the value of mass constant (m) 
must be reduced to 113398. 

I t  thus appears very simply that, if one changes the unit 
of time, one must correspondingly change the ))constantcc 
for the mass of the sun. But Einskitz was apparently un- 
familiar with this ordinary fact of celestial mechanics, and he 
applied the methods of the mathematician and of laboratory 
physics to his problem of planetary motions, and kept his mass 
symbol, a ,  an absolute constant, instead of changing it to 
conform to his new unit of theoretical, relativity time. And thus 
the equation (2) of his osecond approximationcc is not homo- 
geneous in units: the constant, a, is expressed in terms of the 
uniform time of classical astronomy, and the ))time variable+ (s) 
in terms of relativity units. 

This non-homogeneity as to units employed in the 
various terms of the Einstein equation may be corrected by 
noting that, as the expression for mass in celestial mechanics 
varies with the square of the time unit employed, the value of 
the constant becomes, when expressed in relativity units: 

a, = a ( ~  + 3B2/lr2). 
With this relativity value for the sconstant determined by the 
mass of the sun{(, Einstein's equation (2) becomes: 

The equation is now homogeneous as to units of time, and it is 
of identicallv the same form as that of Newton. Thus a 
complete transformation in time units leaves the form of the 
equation unchanged; and the geometrical solution is identi- 
cally the same as that of Newton: a fixed ellipse. 

All of this is in accord with the fundamental relativity 
concepts of varying time. In  the ))second approximationcc 
time is measured in terms of the local, relativity time of the 
theoretical ))clock(( attached to the planet. And this local 
time varies with the speed of the planet through space, and 
changes with its varying distance from the sun. Thus, Ein- 
stein, in his fundamental paper, states: 

,Thus the clock goes more slowly if set up in the neigh- 
borhood of ponderable masses.(( 
and gives formulas for the variation in clock rates with the 
distance of the clock from the central gravitational body (the 
sun), and for differing speeds of the planet and clock through 
space. Hence as the relativist observer on the planet approa- 
ches nearer and nearer the sun, his speed will increase, his 
clock will run more and more slowly, his unit of time will 
become greater, and his expression for, or his measure of the 
mass of the sun (a) will also become greater and greater. 
Now, according to the formulas, this variation in ac is just 
exactly what it should be to adjust this measure of the mass 
of the sun to the changing time unit of the travelling arelativity 
clockc. The relation between the time unit (ds) and the measure 
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of the mass of the sun (a) is thus constant and the same in all 
parts of the orbit, and the geometrical solution of the equation 
is identically the same as though ds and a were constant and 
equal to the respective Newtonian values. 

Another way of showing that these two formulas, the 
Newtonian and the Hinsteinian, represent the same general 
law of gravitation is by considering the specific meanings of 
the formulas themselves. The first members of the equations (I) 
and (2) each represent component accelerations of the planet 
caused by the gravitational field of the sun: the first in terms 
of units of classical mechanics; the second in terms of the 
special units of general relativity. The second members show 
that these accelerations are not equal. This inequality of the 
two accelerations may be caused either by different laws of 
gravitation, or by different intervals of time during which the 
accelerations were measured. Einstein apparently accepts 
the first alternative, and claims that the second formula repre- 
sents a different law of gravitation from that of Newton. This 
without any investigation, or adequate explanation, and in 
spite of the admitted fact (p. g37) that the time intervals, or 
,time variabIesu are different in the two formulas. 

Now the measure of the acceleration of a body varies 
directly with the square of the time unit. The acceleration at 
the surface of the earth, due to the earth's gravitational action, 
is some 9.806 meters per second: in two seconds it is four times 
this, or 39.22 meters: and when measured in terms of minutes, 
this same acceleration is some 35-2 kilometers. The two 
accelerations under consideration, that given by the Newtonian 
formula (I)  and that given by the Einsteinian formula (2), 
are accelerations for, and measured in, different units of time 
(p- 837). And these accelerations, if due to the same gravi- 
tational action, should be directly proportional to the squares 
of the respective *time variables((, or units of time. From 
Einstein's own formulas and statements, one has seen that 
these time variables are different, and one can find that the 
ratio of the squares of these time variables is given by the 
formula : 

I + 3B2/r2. 
But this is the factor which appears in the second member of 
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Einstein's equation, and which alone represents the difference 
between the two formulas. Thus the increased acceleration of 
Einstein's ))second approximatione is due, solely and entirely, 
to the increased time interval in which the acceleration is 
measured. 

The ))first approximation((, or Newtonian formula (I), 
measures the component acceleration, due to the sun's gravi- 
tational field, in terms of units of standard, uniform, astro- 
nomical time: the $second approximationcc, or Einstez'nian 
formula (z), measures the same acceleration, due to the same 
gravitational action, in  terms of units of the local, planetary 
time of general relativity. The two formulas represent the 
same law of gravitation and the same effect of gravitation; 
but they measure that effect in terms of different units of time. 

And thus the #perihelia1 term(( of Einstein is merely a 
factor of transformation from one system of units to another, 
analogous to the factors which change feet into meters, or 
dollars into marks. The unit of time, used by Einstein in 
his form of the planetary equation, is greater than a unit 
of ordinary astronomical time; and in a definite number of 
such relativity days, therefore, a planet will travel farther 
than it would in the same number of astronomical days. In  
one hundred years of Einstein's theoretical relativity time 
M~~~~~ will travel farther than in a century of astronomical 
time. the planetary formula the factor of reduction for this 
difference appears as 43Ni  and it is this 43n that Einstein 
erroneously interprets as a $perihelia1 motion{< of the planet's 
orbit. 

Thus the original, but now unquoted and apparently 
forgotten, paper of Einstein shows, directly and without the 
possibility of doubt, that his formula of planetary motion is 
based upon and involves the Newtonian law of inverse squares; 
shows that he derived his formula from that of Newton by a 
direct transformation in time units. The relativity 
rotation of planetary orbits is a mathematical illusion: an 
illusion due to an incomplete mathematical transformation 
and to an illogical interpretation of the resulting formula. The 
Newtonian law has not been abolished: there is no Eznsteinian 
law of gravitation. 

Ch. Lane Poor. 

Weitere Bemerkungen zum Nova-Problem. Von H. Gehne. 
Die Ausfiihrungen, die ich in AN 235.93 zu dem Thema 

))WeiDe Zwerge und Neue Sterneu machte, bediirfen in manchen 
Punkten der ErgHnzung. Es kommt mir dabei auch darauf an, 
an Hand der #Permi-Dirac-Statistika zu zeigen, wie sich die 
groBen Energiebetrage ergeben, die der dichten Materie in 
den WeiDen Zwergen zukommen. Diese Untersuchung setze 
ich an  den SchluB dieses Berichtes. Es sei aber gleich bemerkt, 
da13 ich mich darauf beschranken werde, nur die durch Ioni- 
sation freigewordenen Elektronen als ~Fermi-Gascc starker 
Entartung zu behandeln. Zu meinem friiheren Artikel sind 
ein paar Erggnzungen zu machen, die erstens die Anbringung 
der bolometrischen Korrektion an die visuellen Helligkeiten 
betreffen und zweitens hinsichtlich der Frage der Polytropen- 
klasse die erforderliche Unbeschranktheit herstellen. Weiter 
werde ich kurz zeigen, daB sich der absteigende Ast der Licht- 

kurve Keuer Sterne, den ich in AN 5619 als Kontraktion ver- 
bunden mit Pulsationen deutete, als eine Lijsung der Yogi- 
Jeansjchen Differentialgleichung der Stabilitat der Sterne 
ergibt. 

Pikel) hat in MN 89 das Nova-Problem von einem ganz 
ahnlichen Standpunkt behandelt wie ich und hat dabei die 
bolometrischen Korrektionen beriicksichtigt. Ausgehend von 
den bei Eddington gegebenen bolometrischen Korrektionen 
fur die effektiven Temperaturen von 700~-20000" rechnet Pike 
dieselben bis 6oooo0 und extrapoliert weiter bis ~ooooo". 
Fur die letztere Temperatur wird die bolometrische Korrektion 
dm = +6m3. Pike erhalt diesen Wert durch graphische Extra- 
~olation, indem er logT gegen logdm auftragt ; benutzt 
man dagegen T und d m  selber, so kann man ohne Schwierig- 
keiten bolometrische Korrektionen erhalten, die fiir T>60000° 




